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3.9.3 The Rabin problem — individual bits
Let n = pq, where p and ¢ are distinct primes each congruent to 3 modulo 4.
3.88 Fact Definethe predicate B : Q,, — {0,1} by B(z) = z mod 2; that is, B(z) isthe

least significant bit of the quadratic residue z. Then B is a hard predicate for the Rabin
function (see page 115).

3.89 Fact Letk = O(lglgn) be an integer. Define the k-bit predicate B : Q,, — {0,1}*
by B (z) = x mod 2*. That is, B(*)(x) consists of the k least significant bits of the
quadratic residue . Then B®*) isahard k-bit predicate for the Rabin function.

Thus the Rabin function has1g 1g » simultaneously secure hits.

3.10 The subset sum problem

The difficulty of the subset sum problem was the basis for the (presumed) security of the
first public-key encryption scheme, called the Merkle-Hellman knapsack scheme (§8.6.1).

3.90 Definition Thesubset sumproblem(SUBSET-SUM) isthefollowing: givenaset {a1, az,
. ,ay} Of positive integers, caled a knapsack set, and a positive integer s, determine
whether or not there is a subset of the a; that sum to s. Equivalently, determine whether

or not thereexist z; € {0,1},1 <4 <n, suchthat > ; a;z; = s.

The subset sum problem above is stated as a decision problem. It can be shown that
the problem is computationally equivalent to its computational version whichisto actually
determine the x; such that Z?:l a;z; = s, provided that such z; exist. Fact 3.91 provides
evidence of the intractability of the subset sum problem.

3.91 Fact The subset sum problem is NP-complete. The computational version of the subset
sum problem is NP-hard (see Example 2.74).

Algorithms 3.92 and 3.94 give two methods for solving the computational version of
the subset sum problem; both are exponential -timealgorithms. Algorithm 3.94 isthefastest
method known for the general subset sum problem.

3.92 Algorithm Naive algorithm for subset sum problem

INPUT: aset of positiveintegers {a1, az, - .. ,a,} and a positive integer s.
OUTPUT: z; € {0,1},1 < ¢ < n, suchthat " ; a;z; = s, provided such z; exist.

1. For each possible vector (z1, z2, . .. ,2,) € (Z2)™ do the following:
1.1 Computel = "7 | a;z;.
1.2 If | = sthenreturn(asolutionis (z1, z2, . .. ,Zy)).

2. Return(no solution exists).

3.93 Fact Algorithm 3.92 takes O(2™) steps and, hence, isinefficient.
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3.94 Algorithm Meet-in-the-middle algorithm for subset sum problem

INPUT: aset of positiveintegers {a1, az, . . . , a,} and apositive integer s.
OUTPUT: z; € {0,1},1 < ¢ < n, suchthat >_" ; a;z; = s, provided such z; exist.

1. Sett+|n/2].

2. Construct atable with entries (Y.°_, a;@s, (€1, 22, - - - ,2¢)) for (z1,22, ... ,2t) €
(Z,)t. Sort thistable by first component.

3. For each (@441, Teq2, - - ,Zn) € (Z2)™¢, do thefollowing:

3.1 Compute I =s—> 7", 41 @:%; and check, using abinary search, whether [is
thefirst component of some entry in the table.
32 If I = Y°!_, a;z; thenreturn(asolution is (z1, 22, . - . , Zn)).
4. Return(no solution exists).

3.95 Fact Algorithm 3.94 takes O(n2™/2) steps and, hence, isinefficient.

3.10.1 The L3-lattice basis reduction algorithm

The L3-lattice basis reduction algorithm is a crucial component in many number-theoretic
algorithms. Itisuseful for solving certain subset sum problems, and hasbeen used for crypt-
analyzing public-key encryption schemes which are based on the subset sum problem.

3.96 Definition Letz = (x1,22,...,2,) andy = (y1,¥2, - - - , Y ) betwo vectorsinR™. The
inner product of z and y is the real number

<z,Yy>= 11 +22Y2+ -+ TpYn-

3.97 Definition Lety = (y1,y2,. .. ,yn) beavectorinR™. Thelength of y isthe real number

Iyl = <yy> = \/y%+y%+---+y%~

3.98 Definition Let B = {b1,b2,...,b,} beaset of linearly independent vectorsin R™ (so
thatm < n). Theset L of all integer linear combinationsof by, bo, ... , b, iscaledalattice
of dimension m; that is, L = Zby + Zbs + - -- + Zb,,,. The set B iscalled abasisfor the
lattice L.

A lattice can have many different bases. A basis consisting of vectors of relatively
small lengthsis called reduced. The following definition provides a useful notion of are-
duced basis, and is based on the Gram-Schmidt orthogonalization process.

3.99 Definition Let B = {b1,b2,...,b,} beabasisfor alattice L C R™. Define the vectors
b7 (1 <14 < n)andtherea numbers u; ; (1 < j < 4 < n)inductively by
LY S (38)
g = prprse SISt '
i—1
b = bi— > migbl, 1<i<n. (3.9

7j=1
The basis B is said to be reduced (more precisely, Lovasz-reduced) if

1
|1, Si’ forl<j<i<n
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(where |, ;| denotes the absolute value of y; ;), and

3
ol 2 (5 - socs ) I2al?, for1<i<a. (310
Fact 3.100 explains the sense in which the vectorsin areduced basis are relatively short.

3.100 Fact Let L C R™ bealattice with areduced basis {b1,bs, ... ,by}.
(i) Forevery non-zeroz € L, ||by|| < 2(7=1/2)|z]|.
(i) Moregeneraly, for any set {a1,as, ... ,a:} of linearly independent vectorsin L,
161 < 20D max(|las ), lazll, - - - , llasll), for1<j<t.

The L3-lattice basis reduction algorithm (Algorithm 3.101) is a polynomial-time algo-
rithm (Fact 3.103) for finding areduced basis, given a basisfor alattice.

3.101 Algorithm L3-lattice basis reduction algorithm

INPUT: abasis (b1, bs, ... , by) for alattice L inR™, m > n.
OUTPUT: areduced basisfor L.
1. b+by, B+ < bj,b7 >.
2. For ¢ from 2 to n do the following:
2.1 bf+b;.
2.2 Forj from1tod — 1, set p; j4 < b;, b} > /Bj and b «=b} — p; ;b7
2.3 B+ < bf, b >.
3. k2.
4. Execute subroutine RED(k,k — 1) to possibly update some y; ;.
5. If By < (§ — pf, x_1)Br—1 then do the following:
5.1 Set pé—pr k-1, BBy + p?Br—1, pgk—1+pBr—1/B, Byp+By_1Bi/B,
and B,_1+B.
5.2 Exchange by, and bg_1.
5.3 If k > 2 then exchange p, ; and pp—1,; forj =1,2,... ,k — 2.
54 Fori=k+1,k+2,... ,n:
Set bé—phs i, fhi ot tio—1 — pt, AN pg g1+t + Lk k—144i k-
55 k+ max(2,k — 1).
5.6 Goto step 4.
Otherwise, forl =k — 2,k —3,...,1, execute RED(%,l), and finally set k<& + 1.
6. If £ < nthen go to step 4. Otherwise, return(by, b, ... , by,).

RED(k,!) If |ug,i| > 3 then do the following:
1. r+ |_0.5 + Mk,lJ, bbb — rb;.
2. Forjfrom1tol — 1, et pug j4—fir,; — THitj-
3. Wkt pk — T

3.102 Note (explanation of selected steps of Algorithm 3.101)
(i) Stepsland2initializethealgorithm by computingd} (1 <¢ <m)andu;; (1 <j <
¢ < n) asdefined in equations (3.9) and (3.8), and also B; =< b}, b > (1 < ¢ < n).

(i) k isavariable such that the vectors by, bs, . .. , bx_1 arereduced (initially £ = 2 in
step 3). The algorithm then attemptsto modify by, so that b1, bs, . . . , by, arereduced.
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3.103

(iii) In step 4, the vector by, is modified appropriately so that |ux,k—1| < %, and the g, ;
areupdatedfor1 < j < k — 1.

(iv) In step 5, if the condition of equation (3.10) is violated for ¢ = k, then vectors by,
and b1 are exchanged and their corresponding parameters are updated. Also, k is
decremented by 1 sincethenit isonly guaranteed that b1, b, . .. , bx—2 are reduced.
Otherwise, by, is modified appropriately so that |ux, ;| < 1 forj = 1,2,... ,k -2,
while keeping (3.10) satisfied. & is then incremented because now by, b, .. ., by are
reduced.

It can be proven that the L3-algorithm terminates after a finite number of iterations.
Note that if L is an integer lattice, i.e. L C Z", then the L3-agorithm only operates on
rational numbers. The precise running timeis given next.

Fact Let L C Z" bealatticewith basis {b1,bs,... ,b,},andlet C € R, C > 2, besuch
that ||b;|2 < C fori = 1,2,... ,n. Then the number of arithmetic operations needed by
Algorithm 3.101 is O(n* log C), on integers of size O(n log C) bits.

3.10.2 Solving subset sum problems of low density

3.104

3.105

The density of aknapsack set, as defined below, providesameasure of the size of the knap-
sack elements.

Definition LetS = {a1,0a2,... ,a,} beaknapsack set. Thedensity of S isdefined to be
_ n
- max{lga; |1 <i<n}

Algorithm 3.105 reduces the subset sum problem to one of finding a particular short
vector in alattice. By Fact 3.100, the reduced basis produced by the L3-algorithm includes
avector of length which is guaranteed to be within afactor of 2("~1)/2 of the shortest non-
zero vector of the lattice. In practice, however, the L3-agorithm usually finds a vector
which is much shorter than what is guaranteed by Fact 3.100. Hence, the L3-algorithm
can be expected to find the short vector which yields a solution to the subset sum problem,
provided that this vector is shorter than most of the non-zero vectorsin the lattice.

Algorithm Solving subset sum problems using L3-algorithm

INPUT: aset of positive integers { a1, az, - . . ,a,} and an integer s.
OUTPUT: z; € {0,1},1 < ¢ < n, suchthat " ; a;z; = s, provided such z; exist.
1 Letm=[% ml.
2. Forman (n+1)-dimensional lattice L with basis consisting of the rows of the matrix

1 0 0 -+ 0 ma
01 0 --- 0 mas
0 0 1 --- 0 mag
A= : :
0 0 O 1 may,
R 3 ms

3. Find areduced basis B of L (use Algorithm 3.101).
4. For each vector y = (y1,¥2,--- , Yn+1) in B, do thefollowing:
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41 Ifypq1 =0andy; € {—3, 3} forali=1,2,... ,n, then do the following:

Fori=1,2,... ,m, St oy, + 1

If Y0 | a;z; = s, thenreturn(asolution is (z1, z2, - - . , Tn)).
Fori= 1,2, m Stz — g4},
If Y% | a;z; = s, thenreturn(asolution is (z1, z2, - - . , Tn)).

5. Return(FAILURE). (Either no solution exists, or the algorithm hasfailed to find one.)

Justification. Let the rows of the matrix A be by, bs, ... ,b,y1, andlet L bethe (n + 1)-

dimensional latticegenerated by thesevectors. If (z1, z2, . .. , 2,) isasolutionto thesubset
sum problem, the vector y = S°7 | @;b; — byy1 isin L. Notethaty; € {—3, 3} for

i=1,2,...,nandy,.1 = 0. Since ||y|| = \/y% +y3+---+y2, thevectory isa
vector of short lengthin L. If the density of the knapsack set is small, i.e. the a; arelarge,
then most vectorsin L will have relatively large lengths, and hence y may be the unique
shortest non-zero vector in L. If thisisindeed the case, then thereis good possibility of the
L3-algorithm finding a basis which includes this vector.

Algorithm 3.105 is not guaranteed to succeed. Assuming that the L3-algorithm always
produces a basis which includes the shortest non-zero lattice vector, Algorithm 3.105 suc-
ceeds with high probability if the density of the knapsack set is lessthan 0.9408.

3.10.3 Simultaneous diophantine approximation

3.106

3.107

Simultaneous diophanti ne approximationis concerned with approximating avector (‘1—q1 , q—; ,

., %") of rational numbers (more generally, avector (a1, ca, . . . , o, ) Of real numbers)
by avector (%, = %) of rational numberswith asmaller denominator p. Algorithms
for finding simuﬁaneous diophantine approximation have been used to break some knap-
sack public-key encryption schemes (§8.6).

Definition Letd bearea number. Thevector (%, %2, ceey %") of rational numbersissaid
to be a simultaneous diophantine approximation of §-quality to the vector (%, %2, ey %")
of rational numbersif p < ¢ and

<qg%fori=1,2,...,n.

’ q;

P——p
q

(The larger ¢ is, the better is the approximation.) Furthermore, it is an unusually good si-

multaneous diophantine approximation (UGSDA) if § > %
Fact 3.107 showsthat an UGSDA isindeed unusual .

Fact Forn > 2, the set
q1 q q
Sn(Q):{<Elag2aa?n> |0SQz<Qa ng(QIanaaqnaQ)zl}

has at least 1¢™ members. Of these, at most O(g™*~#+1) members have at least one §-
quality simultaneous diophantine approximation. Hence, for any fixed § > % the fraction
of membersof S,,(¢g) having at least one UGSDA approaches0 as g — oo.

Algorithm 3.108 reduces the problem of finding a §-quality simultaneous diophantine
approximation, and hence also a UGSDA, to the problem of finding a short vector in alat-
tice. The latter problem can (usually) be solved using the L3-lattice basis reduction.
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3.108 Algorithm Finding a é-quality simultaneous diophantine approximation

INPUT: avector w = (%1, %2,... ,%") of rational numbers, and arational number § > 0.
OUTPUT: ad-quality simultaneous diophantine approximation (%, %2, ey %") of w.

1. Choose an integer A ~ ¢°.

2. Use Algorithm 3.101 to find areduced basis B for the (n + 1)-dimensional lattice L
which is generated by the rows of the matrix

g 0 0 -+ 0 0
0 g 0 -+ 0 0
0 0 M - 0 0
A= : . . _ . .
0 0 0 -+ A O
=A@t —Ag@ —Agz - —Agn 1
3. Foreachv = (v1,v2, ..., Un, Vpt1) in B such that v, 41 # ¢, do the following:
31 P—Upt1.
3.2 Forifrom1lton, setpz«—% (% +pg;).
33 If [p% —p;| < g~ foreachi, 1 <i <mn, thenreturn(& 22, . Bx)

4. Return(FAILURE). (Either no §-quality simultaneous diophanti ne approximation ex-
ists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix A be denoted by b1, bs, ... ,b,41. Suppose that

(%1, %2, ,%") has a §-quality approximation (%1, p—pz,... ,%"). Then the vector
x = pibi+peba+ -+ ppby, + by

= (AD1g = p@1), \(p2g — PG2); - - - , N(Png — Pgn), D)
isin L and has length less than approximately ( “n + 1)g. Thus z isshort compared to the

original basisvectors, which are of length roughly ¢**+. Also, if v = (v, v, ... ,V541) IS
avector in L of length lessthan ¢, then the vector (%, %,... ,%") definedin step 3isad-

quality approximation. Hencethereisagood possibility that the L3-algorithm will produce
areduced basis which includes a vector v that correspondsto a §-quality approximation.

3.11 Factoring polynomials over finite fields

The problem considered in this section is the following: given apolynomia f(z) € Fyx],
with ¢ = p™, finditsfactorization f(z) = f1(z)** fa(x)°* - - - f¢(2)*, whereeach f;(z) is
anirreducible polynomia inF,[z] and eache; > 1. (e; iscalled the multiplicity of the fac-
tor f;(z).) Severd situationscall for the factoring of polynomialsover finitefields, such as
index-calculus algorithms in F3,. (Example 3.70) and Chor-Rivest public-key encryption
(§8.6.2). This section presents an algorithm for square-free factorization, and Berlekamp's
classical deterministic algorithm for factoring polynomiaswhich is efficient if the under-
lying field issmall. Efficient randomized algorithms are known for the case of large g; ref-
erences are provided on page 132.
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