
�
3.10 The subset sum problem 117

3.9.3 The Rabin problem — individual bits

Let ������� , where � and � are distinct primes each congruent to � modulo 	 .

3.88 Fact Define the predicate
���
�������� � � � � by
�� �������! #" $!% ; that is,
�� �&� is the
least significant bit of the quadratic residue � . Then
 is a hard predicate for the Rabin
function (see page 115).

3.89 Fact Let '��)(�� * +,* +,��� be an integer. Define the ' -bit predicate
#- . /0�
��1���2� � � � � .
by
#- . / � ���1�3�! !" $#% . . That is,
�- . / � ��� consists of the ' least significant bits of the
quadratic residue � . Then
#- . / is a hard ' -bit predicate for the Rabin function.

Thus the Rabin function has * +4* +4� simultaneously secure bits.

3.10 The subset sum problem

The difficulty of the subset sum problem was the basis for the (presumed) security of the
first public-key encryption scheme, called the Merkle-Hellman knapsack scheme (5 8.6.1).

3.90 Definition The subset sum problem (SUBSET-SUM) is the following: given a set � 6 7 � 6 8 ,
9 9 9 � 6 � � of positive integers, called a knapsack set, and a positive integer : , determine
whether or not there is a subset of the 6 ; that sum to : . Equivalently, determine whether
or not there exist � <4=>� � � � � , ��?�@4?�� , such that

�< A 7 6 < � <B� : .
The subset sum problem above is stated as a decision problem. It can be shown that

the problem is computationally equivalent to its computational version which is to actually
determine the � < such that

�< A 7 6 < � <B� : , provided that such � < exist. Fact 3.91 provides
evidence of the intractability of the subset sum problem.

3.91 Fact The subset sum problem is NP-complete. The computational version of the subset
sum problem is NP-hard (see Example 2.74).

Algorithms 3.92 and 3.94 give two methods for solving the computational version of
the subset sum problem; both are exponential-time algorithms. Algorithm 3.94 is the fastest
method known for the general subset sum problem.

3.92 Algorithm Naive algorithm for subset sum problem

INPUT: a set of positive integers � 6 7 � 6 8 � 9 9 9 � 6 ��� and a positive integer : .
OUTPUT: � <,=�� � � � � , ��?�@4?�� , such that

�< A�7 6 < � <B� : , provided such � < exist.

1. For each possible vector � � 7 � � 8 � 9 9 9 � � � �4=C� D 8 � � do the following:

1.1 Compute E�� �< A 7 6 < � < .
1.2 If E&� : then return(a solution is � �&7 � ��8 � 9 9 9 � � ���).

2. Return(no solution exists).

3.93 Fact Algorithm 3.92 takes (!� % � � steps and, hence, is inefficient.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

118 Ch. 3 Number-Theoretic Reference Problems

3.94 Algorithm Meet-in-the-middle algorithm for subset sum problem

INPUT: a set of positive integers � � � � � � � � � ��� � �	� and a positive integer
 .
OUTPUT: � ��
 � � � � � , ��������� , such that

�� � � � � � ����
 , provided such � � exist.

1. Set � ��� � � ! " .
2. Construct a table with entries # $� � � � � � � � # � � � � � � � � � � � $

% %
for # � � � � � � � � � � � $

%

& � % $. Sort this table by first component.

3. For each # � $ ' � � � $ ' � � � � � � � �
%
(# & � % �) $, do the following:

3.1 Compute *���
,+ �� � $ ' � � � � � and check, using a binary search, whether * is
the first component of some entry in the table.

3.2 If * � $� � � � � � � then return(a solution is # � � � � � � � � � � � � %).
4. Return(no solution exists).

3.95 Fact Algorithm 3.94 takes -.# � ! � / � % steps and, hence, is inefficient.

3.10.1 The 021 -lattice basis reduction algorithm

The 3�4 -lattice basis reduction algorithm is a crucial component in many number-theoretic
algorithms. It is useful for solving certain subset sum problems, and has been used for crypt-
analyzing public-key encryption schemes which are based on the subset sum problem.

3.96 Definition Let �5��# � � � � � � � � � � � � % and 6 ��# 6 � � 6 � � � � � � 6 � % be two vectors in 7 � . The
inner product of � and 6 is the real number

8 � � 6.9 �:� � 6 ��; � � 6 ��;�< < < ; � � 6 � �
3.97 Definition Let 6 ��# 6 � � 6 � � � � � � 6 � % be a vector in 7 � . The length of 6 is the real number

= 6 = �?> 8 6 � 6.9 � 6 �� ;@6 �� ;�< < < ;@6 �� �

3.98 Definition Let AB�C� D � � D � � � � � � D EF� be a set of linearly independent vectors in 7 � (so
that GH���). The set 3 of all integer linear combinations of D � � D � � � � � � D E is called a lattice
of dimension G ; that is, 3��I&�D ��; &�D ��;�< < < ; &�D E . The set A is called a basis for the
lattice 3 .

A lattice can have many different bases. A basis consisting of vectors of relatively
small lengths is called reduced. The following definition provides a useful notion of a re-
duced basis, and is based on the Gram-Schmidt orthogonalization process.

3.99 Definition Let AC� � D � � D � � � � � � D �	� be a basis for a lattice 3�J 7 � . Define the vectors
D K� (�2�@�����) and the real numbers L � M N (���(O 8 ���@�) inductively by

L � M N �
8 D � � D KN 98 D KN � D KN 9 �P���(O 8 ������� (3.8)

D K� �QD � +
�) �

N ���
L � M N D KN �P��������� � (3.9)

The basis A is said to be reduced (more precisely, Lovász-reduced) if

R L � M N R � �
! � for ���(O 8 �����

c
S

1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

�
3.10 The subset sum problem 119

(where � ��� � � � denotes the absolute value of ��� � �), and

� � 	� �
��
��� �
� � � ��� � � 	� ��� �
 � for ����������� (3.10)

Fact 3.100 explains the sense in which the vectors in a reduced basis are relatively short.

3.100 Fact Let �!�"$# be a lattice with a reduced basis % � � � �
 � � � � � � #
&
.

(i) For every non-zero ')(� ,
� � � � �+* , # � � - .
 � ' � .

(ii) More generally, for any set % / � � /
 � � � � � / 0 & of linearly independent vectors in ,� � � � �+* , # � � - .
�132 4�5 � / � � � � /
 � � � � � � � / 0 � 6 � for �7�983��: �
The �; -lattice basis reduction algorithm (Algorithm 3.101) is a polynomial-time algo-

rithm (Fact 3.103) for finding a reduced basis, given a basis for a lattice.

3.101 Algorithm <�= -lattice basis reduction algorithm

INPUT: a basis
5 � � � �
 � � � � � � # 6 for a lattice in "$> , ? � � .

OUTPUT: a reduced basis for .
1.
� 	� @ � � , A7� @ � � 	� � � 	�7B .

2. For � from * to � do the following:
2.1

� 	� @ � � .
2.2 For 8 from � to � � � , set � � � � @ � � � � � 	�CBED A � and

� 	� @ � 	� � � � � � � 	� .
2.3 A � @ � � 	� � � 	� B .

3. F @ * .
4. Execute subroutine RED(F , F � �) to possibly update some ��� � � .
5. If A7G � 5 ;H � �
G � G � � 6 A7G ��� then do the following:

5.1 Set � @ � G � G � � , A @ A�G�I �
 A7G � � , � G � G � � @ � A�G � � D A , A�G @ A7G � � A�G D A ,
and A�G � � @ A .

5.2 Exchange
� G and

� G � � .
5.3 If F B * then exchange � G � � and � G � � � � for 8KJL� � * � � � � � F � * .
5.4 For ��J�F I � � F I * � � � � � � :

Set : @ � � � G , � � � G @ � � � G � � � � : , and � � � G � � @ : I � G � G � � � � � G .
5.5 F @ 1K2 4�5 * � F � � 6 .
5.6 Go to step 4.

Otherwise, for M J+F � * � F �
 � � � � � � , execute RED(F , M), and finally set F @ F I � .
6. If FE�+� then go to step 4. Otherwise, return(

� � � �
 � � � � � � #).

RED(F , M) If � � G � N � B �
 then do the following:
1. O @QP R � S I � G � N T , � G @ � G � O � N .
2. For 8 from 1 to M � � , set � G � � @ � G � � � O � N � � .
3. � G � N @ � G � N � O .

3.102 Note (explanation of selected steps of Algorithm 3.101)
(i) Steps 1 and 2 initialize the algorithm by computing

� 	� (���+���+�) and � � � � (�7�98K������) as defined in equations (3.9) and (3.8), and also A$� J7� � 	� � � 	� B (�������+�).
(ii) F is a variable such that the vectors

� � � �
 � � � � � � G � � are reduced (initially F)JL* in
step 3). The algorithm then attempts to modify

� G , so that
� � � �
 � � � � � � G are reduced.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

120 Ch. 3 Number-Theoretic Reference Problems

(iii) In step 4, the vector � � is modified appropriately so that � ��� � � ��� � 	 �
 , and the ��� � �
are updated for �
	���������� .

(iv) In step 5, if the condition of equation (3.10) is violated for ����� , then vectors � �
and � � ��� are exchanged and their corresponding parameters are updated. Also, � is
decremented by 1 since then it is only guaranteed that � � � �
 � � � ��� � � �
 are reduced.
Otherwise, � � is modified appropriately so that � � � � � ��	 �
 for ����� � � � � � � � ��� � ,
while keeping (3.10) satisfied. � is then incremented because now � � � �
 � � � � � � � are
reduced.

It can be proven that the "! -algorithm terminates after a finite number of iterations.
Note that if is an integer lattice, i.e. $#$%'& , then the (! -algorithm only operates on
rational numbers. The precise running time is given next.

3.103 Fact Let �# %'& be a lattice with basis) � � � �
 � � � ��� � &
*
, and let +-,/. , +-0 � , be such

that 1 � 2 1

	3+ for �4��� � � � � � � � 5 . Then the number of arithmetic operations needed by

Algorithm 3.101 is 6�7 5�8'9 : ; +=< , on integers of size 6�7 5
9 : ; +=< bits.

3.10.2 Solving subset sum problems of low density

The density of a knapsack set, as defined below, provides a measure of the size of the knap-
sack elements.

3.104 Definition Let >��?) @ � � @
 � � � � � @ &
*

be a knapsack set. The density of > is defined to be
A � 5B�C D) 9 ; @ 2 � �=	E�'	 5 * �

Algorithm 3.105 reduces the subset sum problem to one of finding a particular short
vector in a lattice. By Fact 3.100, the reduced basis produced by the ! -algorithm includes
a vector of length which is guaranteed to be within a factor of � F & ��� G H

of the shortest non-

zero vector of the lattice. In practice, however, the "! -algorithm usually finds a vector
which is much shorter than what is guaranteed by Fact 3.100. Hence, the "! -algorithm
can be expected to find the short vector which yields a solution to the subset sum problem,
provided that this vector is shorter than most of the non-zero vectors in the lattice.

3.105 Algorithm Solving subset sum problems using I�J -algorithm

INPUT: a set of positive integers) @ � � @
 � � � � � @ &
*

and an integer K .
OUTPUT: L 2",M) N � � * , �
	E�(5 , such that &2 O � @ 2 L 2'��K , provided such L 2 exist.

1. Let PQ�SR �
ST 5�U .
2. Form an 7 5WV � < -dimensional lattice with basis consisting of the rows of the matrix

X �

�YNZN\[[[]N\PM@ �
N^�YN [[[N\PM@

NZN^� [[[N\PM@ !...

...
...

. . .
...

...
NZNZN [[[�_PM@ &�
 �
 �
 [[[�
 P�K

3. Find a reduced basis ` of (use Algorithm 3.101).
4. For each vector a��-7 a � � a
 � � � � � a & b � < in ` , do the following:

c
c

1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

�
3.10 The subset sum problem 121

4.1 If � � �����	� and �
���
 � �� � �� � for all ����� � � � � � ��� � , then do the following:

For ����� � � � � � ��� � , set �
 � �
�� �� .
If

�
 � ���
 �
 �! , then return(a solution is " � � � � � � � � �#� � ��$).
For ����� � � � � � ��� � , set �
 � �%�
�� �� .
If

�
 � � �
 �
 �! , then return(a solution is " � � � � � � � � �#� � ��$).
5. Return(FAILURE). (Either no solution exists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix & be ' � � ' � � � � � � ' � ��� , and let (be the " � � � $ -
dimensional lattice generated by these vectors. If " � � � � � � � � �#� � ��$ is a solution to the subset
sum problem, the vector �)� �
 �#� �
 '
 ��' � �#� is in (. Note that �
 �
 � �� � �� � for

�*�+� � � � � � � � � and � � �#� �,� . Since - �#-.� � �� � �
�� �0/ / / � � �� �#� the vector � is a

vector of short length in (. If the density of the knapsack set is small, i.e. the �
 are large,
then most vectors in (will have relatively large lengths, and hence � may be the unique
shortest non-zero vector in (. If this is indeed the case, then there is good possibility of the
(�1 -algorithm finding a basis which includes this vector.

Algorithm 3.105 is not guaranteed to succeed. Assuming that the (21 -algorithm always
produces a basis which includes the shortest non-zero lattice vector, Algorithm 3.105 suc-
ceeds with high probability if the density of the knapsack set is less than � � 3 4 � 5 .

3.10.3 Simultaneous diophantine approximation

Simultaneous diophantine approximation is concerned with approximating a vector " 6 76
� 6 86 ,

� � �#� 6 96 $ of rational numbers (more generally, a vector " : � � : � � � � �#� : ��$ of real numbers)
by a vector " ; 7;

� ; 8;
� � � � � ; 9; $ of rational numbers with a smaller denominator < . Algorithms

for finding simultaneous diophantine approximation have been used to break some knap-
sack public-key encryption schemes (= 8.6).

3.106 Definition Let > be a real number. The vector " ; 7; � ; 8; � � � ��� ; 9; $ of rational numbers is said
to be a simultaneous diophantine approximation of > -quality to the vector " 6 76

� 6 86
� � � ��� 6 96 $of rational numbers if <�?	@ and

< @
@ � <
 A0@ B�C for ����� � � � � � � � � �

(The larger > is, the better is the approximation.) Furthermore, it is an unusually good si-
multaneous diophantine approximation (UGSDA) if >ED �� .

Fact 3.107 shows that an UGSDA is indeed unusual.

3.107 Fact For �GF	� , the set

H � " @ $ � @ �
@ �
@ �
@ � � � �#�

@ �
@

I � A	@
�?	@ �%J K L " @ � � @ � � � � ��� @ � � @ $ ���

has at least �� @ � members. Of these, at most M " @ � N � B�C O ��� $ members have at least one > -
quality simultaneous diophantine approximation. Hence, for any fixed > D �� , the fraction
of members of

H � " @ $ having at least one UGSDA approaches � as @�PRQ .

Algorithm 3.108 reduces the problem of finding a > -quality simultaneous diophantine
approximation, and hence also a UGSDA, to the problem of finding a short vector in a lat-
tice. The latter problem can (usually) be solved using the (�1 -lattice basis reduction.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

122 Ch. 3 Number-Theoretic Reference Problems

3.108 Algorithm Finding a � -quality simultaneous diophantine approximation

INPUT: a vector ����� � ��	� �
�	� � � ��� �
�
�

of rational numbers, and a rational number ����� .
OUTPUT: a � -quality simultaneous diophantine approximation � � ���� �
��� � � ��� �
�

�
of � .

1. Choose an integer ����� � .
2. Use Algorithm 3.101 to find a reduced basis � for the � ��� � � -dimensional lattice !

which is generated by the rows of the matrix

" �

�#� �$�&% % %'�&�
� �#� �&% % %'�&�
�(� �#� % % % �&�
...

...
...

. . .
...

...
�(�$�&% % % �#� �) ��� *) ��� +) �#� , % % %) �#� - �

3. For each .��/� . * � . + � � � �0� . - � . - 10*
�

in � such that . - 10*�2� � , do the following:

3.1 3�4 . - 1 * .
3.2 For 5 from 1 to � , set 3 6 4 *�

7 89 �:3 � 6 .

3.3 If ; 3<� 8�
) 3 6 ; = � > � for each 5 , ��=�5?=�� , then return � � �� � �
� � � � ��� �
�

�
.

4. Return(FAILURE). (Either no � -quality simultaneous diophantine approximation ex-
ists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix
"

be denoted by @ * � @ + � � � �0� @ - 1 * . Suppose that
� � �� � �
� � � � �0� �
�

�
has a � -quality approximation � � �� � �
� � � � ��� �
�

�
. Then the vector

A �B3 * @ * �C3 + @ + ��% % % �C3 - @ - �:3�@ - 1 *
�D� � � 3 * �) 3 � * � � � � 3 + �

) 3 � + � � � � ��� � � 3 -#�
) 3 � - � � 3

�

is in ! and has length less than approximately �FE ����� � � . Thus A is short compared to the
original basis vectors, which are of length roughly � * 1 � . Also, if .G��� . * � . + � � � � � . - 1 *

�
is

a vector in ! of length less than � , then the vector � � �� � �
� � � � � � �
�
�

defined in step 3 is a � -
quality approximation. Hence there is a good possibility that the ! , -algorithm will produce
a reduced basis which includes a vector . that corresponds to a � -quality approximation.

3.11 Factoring polynomials over finite fields

The problem considered in this section is the following: given a polynomial H � A �?I:J �
K A L ,

with � �M3 N , find its factorization H � A � � H * � A � O � H + � A � O
 % % % H P � A � O Q , where each H 6 � A � is
an irreducible polynomial in

J
�
K A L and each R 6?S�� . (R 6 is called the multiplicity of the fac-

tor H 6 � A � .) Several situations call for the factoring of polynomials over finite fields, such as
index-calculus algorithms in

J?T+ U (Example 3.70) and Chor-Rivest public-key encryption
(V 8.6.2). This section presents an algorithm for square-free factorization, and Berlekamp’s
classical deterministic algorithm for factoring polynomials which is efficient if the under-
lying field is small. Efficient randomized algorithms are known for the case of large � ; ref-
erences are provided on page 132.

c
W

1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

