Пусть есть таблица из N точек и значений функции в этих точках.
Интерполяция - приближение функции кривой, проходящей через все N точек. Основной недостаток интерполяционных алгоритмов в том, что при изменении значения функции в одной точке необходимо полностью пересчитать интерполяционные формулы.
Аппроксимация - приближение кривой, не обязательно проходящей через все точки. Основные методы аппроксимации обладают (и это очень ценно) свойством 'local control': изменение значения функции в одной точке влечет за собой перевычисление лишь 1-3 формул (это гораздо лучше, чем N формул, особенно в реальных приложениях компьютерной графики).
|